
Language Generation and Veri�cation in the NRL Protocol

Analyzer

Catherine Meadows

Center for High Assurance Computing Systems

Naval Research Laboratory

Washington, DC 20375

USA

Abstract

The NRL Protocol Analyzer is a tool for proving

security properties of cryptographic protocols, and for

�nding aws if they exist. It is used by having the

user �rst prove a number of lemmas stating that in-

�nite classes of states are unreachable, and then per-

forming an exhaustive search on the remaining state

space. One main source of di�culty in using the tool

is in generating the lemmas that are to be proved. In

this paper we show how we have made the task easier

by automating the generation of lemmas involving the

use of formal languages.

1 Introduction

The NRL Protocol Analyzer is a tool for proving
security properties of cryptographic protocols, and for
�nding aws if they exist. In its most basic form, it
is a search tool. A goal (usually an insecure state) is
presented to it, and it attempts to �nd all paths to that
state. However, exhaustive search in itself is not an ad-
equate means of verifying the security of cryptographic
protocols. This is because the state space is assumed
to be in�nite. For example, it is necessary to assume
that an unbounded number of executions of a proto-
col may have taken place, and that a principal can be
engaging in an arbitrarily large number of protocol ex-
ecutions at any given time. Moreover, for the purposes
of analysis, very large sets, such as the number of keys
available, or the number of words that can be produced
by encrypting a word over and over again, are assumed
to be in�nite.

In order to deal with these problems, we have de-
veloped several ways in which users of the Analyzer
can prove lemmas about the unreachability of in�nite

classes of states. One of the most important of these
involves induction on formal languages. The user de-
�nes a formal language and uses the Analyzer to prove
that, if an intruder trying to break the protocol has
found a word in that language, then the intruder must
have already known a word in that language. This, to-
gether with the fact that the intruder knows no words
in the language initially (if that is the case), can be
used to prove inductively that the intruder can never
learn a word in that language. The procedure for prov-
ing a language unreachable has been automated, and
is documented in [5].

Although automation of the language veri�cation
procedure was helpful, until recently it was up to the
user to de�ne the language his or her self. This was
not an easy procedure for complicated protocols, and
required close inspection of Analyzer output, as well as
of the output of the language veri�er whenever it failed

in a proof. Moreover, it was often possible to de�ne a
language that could be proved unreachable, but was
actually somewhat smaller than necessary. It was dif-
�cult to detect when this had occurred, but failure to
prove the largest possible language unreachable could
result in an unmanageably large search space.

Fortunately, it is possible to describe an heuristic
procedure for de�ning formal languages that avoids
many of these problems, and this has been automated
in the most recent version of the Analyzer. Although
this procedure does not guarantee the largest possible
language, we have used it to prove unreachability of
languages that are large enough to be useful, and we
have found that it saves a signi�cant amount of labor.
In this paper we describe how this procedure works.

2 How Languages Are Used in the An-

alyzer

The NRL Protocol Analyzer is written in Prolog
and relies upon equational uni�cation. It employs the
worst-case model used by Dolev and Yao [1] in which
the network is controlled by a hostile intruder who can
read all message, destroy messages, and create or mod-
ify messages. Since the intruder can read all messages,
any message sent may be assumed to have been re-
ceived by the intruder, and since the intruder controls
what messages are received, any message received is
assumed to have been sent by the intruder. Thus we
can think of the protocol as an algebraic system that is
manipulated by the intruder. We also assume that the
intruder may be a legitimate participant in the pro-
tocol, and so has access to some (but not all) of the
secret keys used, and also has the ability to perform
operations such as encryption available to legitimate
participants. As do Dolev and Yao, words in the Proto-
col Analyzer model obey a set of rewrite rules speci�ed
by the user. For example, the user may want to spec-
ify that encryption of a word with a key, followed by
decryption with the same key, reduces to the original
word.

In the Protocol Analyzer, words sent in messages or
stored in local state variables are represented by terms
that are made up of function symbols, constants and
variables. A protocol itself is speci�ed as a set of state
transitions in which the input state is described by mes-
sages received and the values of local state variables,
and the output state is described in terms of messages
sent and new values of local state variables. Actions
local to the intruder, such as the intruder's performing
encryption or decryption, are represented internally in
the same way. States are speci�ed in terms of a set
of words known by the intruder and sets of local state
variables and their values. An example of a local state
variable would be one holding the key that an honest
principal is using to converse with another. An exam-
ple of an insecure state would be one in which that
state variable contains the word K and K is known by
the intruder.

The Protocol Analyzer �nds a complete description
of all states preceding a speci�ed state in the following
way. For each state transition a subset O of the output
is paired up with a subset S of the state description.
The Analyzer uses a narrowing algorithm [7] to �nd a
complete set of substitutions � to the variables in O

and S such that the words in O can be made equal
to the words in S by the application of rewrite rules.
By complete, we mean that, if � is a substitution such
that �O is reducible to �S, then there is a � in � such

that � = �� for some substitution �. The preceding
state consists of the input to the state transition and
the part of the state description that was not used to
produce O.

Languages can arise when we attempt to �nd out
how the intruder can �nd a word, and we �nd ourselves
in an in�nite regression. Consider the following very
simple protocol, with two rules 1:

Encrypt-Decrypt Protocol

Protocol Rule 1

If the intruder knows X and Y , then he or she can
�nd e(X,Y), where e(X,Y) denotes the encryption of
Y with key X.

Protocol Rule 2

If the intruder knows X and Y , then he or she can
�nd d(X,Y), where d(X,Y) denotes the decryption of
Y with key X.

The words used in the encrypt-decrypt protocol
also obey two rewrite rules d(X,e(X,Y)) ! Y , and
e(X,d(X,Y)) ! Y .

Suppose that we want to �nd all the words that
the intruder can know. We ask how the intruder can
�nd Z, where Z is a variable that can stand for any
irreducible word. Using Protocol Rule 1, the Analyzer
will tell us that this can be done if the intruder knows
d(W ,Z) and W for someW , or if Z = e(X,Y) and the
intruder knows X and Y . We label these solutions 1
and 2. Using Protocol Rule 2, the Analyzer will tell us
this can be done if the intruder knows e(W ,Z) and W
for some X, or if Z = d(X,Y) and the intruder knows
X and Y . We label these solutions 3 and 4.

Suppose that we continue our search on solution 3
and ask how the intruder can �nd e(W ,Z). Using Pro-
tocol Rule 1, the Analyzer will tell us that it can be
found if the intruder can �nd X = W and Y = Z (so-
lution 3.1), or if the intruder can �nd X = X1 and Y
= d(X1,e(W ,Z)) (solution 3.2), in which case e(X,Y)
= e(X1,d(X1,e(W ,Z))) will reduce to e(W ,Z). Next,
using Protocol Rule 2, the Analyzer will tell us that
e(W ,Z) can be found if the intruders can �nd X = X1

and Y = e(X1,e(W ,Z)) (solution 3.3), in which case
d(X,Y) = d(X1,e(X1,e(W ,Z)).

We can rule out the solution 3.1 found using Pro-
tocol Rule 1, since it requires the intruder to know Z,
which is the word he or she is trying to �nd. Thus, we
only need to know how the intruder can �nd the words

1It is actually trivial to verify that the intruder can't learn

any words in this protocol, since the intruder knows no words

initially and every rule that produces a word requires that the

intruder knew a word previously. Thus the language technique

is overkill here. However, we �nd the simplicity of this protocol

makes it helpful as an initial example

in the second two solutions. For 3.2 and 3.3, if we
ask the Protocol Analyzer how to �nd d(X1,e(W ,Z))
and e(X1,e(W ,Z)), the reader can verify that the in-
truder can �nd the �rst if he or she can �nd e(X2,
d(X1,e(W ,Z))) or d(X2, d(X1,e(W ,Z))), and the sec-
ond if he or she can �nd e(X2, e(X1,e(W ,Z))) or d(X2,
e(X1,e(W ,Z))).

If we keep applying the Protocol Analyzer, we will
generate ever longer and longer words in this fashion.
Thus, our search will be made easier if we can prove
that, whenever Z is a word not already known by the
intruder, then it is impossible for the intruder to learn
e(X,Z) for any X.

We note that the patterns of words we obtained by
looking for e(X,Z) showed a certain regularity. This
leads us to de�ne the following language A, whose def-
inition is dependent upon the state of the intruder's
knowledge:

1. A ! e(L,K), where L is the set of all irreducible
words and K is the set of all irreducible words not
currently known by the intruder.

2. A ! e(L,A)

3. A ! d(L,A)

We now prove that A is unreachable by taking each
language rule ofA, substituting variables for the terms,
running the Protocol Analyzer on the resulting words,
and examining the words that must by input by the
intruder. In each case, we try to determine that one of
these words must also belong to the language. We will
illustrate this procedure by showing how we show that
the intruder's learning a word satisfying the second lan-
guage rule implies that the intruder most already know
a word belonging toA. The procedure for the other two
language rules is similar.

We take the word e(C,B), where B is assumed to be
a member of A. Applying Protocol Rule 1, which says
that if the intruder can produce X and Y , then he or
she can produce e(X,Y), gives us two solutions. In the
�rst solution, C is uni�ed with X and B is uni�ed with
Y . In the second, Y is uni�ed with d(X,e(C,B)). The
output e(X,d(X,e(C,B))) reduces to e(C,B). The �rst
solution requires the intruder's previous knowledge of
B, which is assumed to be a member ofA. We now con-
sider the second solution. This requires the intruder to
know Y = d(X,e(C,B)). But, since e(C,B) is a mem-
ber of the languageA according to the second language
rule, d(X,e(C,B)) belongs to A by the third language
rule. Thus this solution requires the intruder's previous
knowledge of a member of A.

Applying the Protocol Rule 2, which says that if
the intruder knows X and Y , then he or she can learn

d(X,Y) gives us one solution, in which Y is uni�ed
with e(X,e(C,B)) giving output d(X,e(X,e(C,B))) re-
ducing to e(C,B). Thus the intruder most know X

and Y = e(X,e(C,B)). Since e(C,B) is a member of
A, e(X,e(C,B)) must belong to A by the second lan-
guage rule, and we are done.

This procedure of proving a language unreachable
has been automated in the Protocol Analyzer.

3 Notation and De�nitions

In this section we outline some of the basic notation
and de�nitions used in the rest of the paper.

3.1 Elementary Definitions

De�nitions: Let X be a term. The size of X is the
number of subterms of X.

Thus, the size of g(Y) is 2, since g(Y) and Y are the
subterms. Likewise, the size of g(Z,b(t),r(s(q))) is 7.

De�nition: Let X be a term and Y be a subterm
of X. We de�ne an occurrence ! of Y in X as follows.
If Y = X, then the occurrence of Y in X is �. If Y is
the i'th argument of X, then the occurrence of Y in X
is i. If the occurrence of Z in X is i1:::ik, and Y is the
j'th argument of Z, then the occurrence of Y in X is
i1:::ik:j. If ! = i1:::ik is an occurrence, we call each ij
a component of !.

Note that there can be more than one occurrence of
a subterm in a term. Thus, if X = f(g,h(b),t(g)), g
occurs at 1 and 3.1.

We can also compare occurrences, as follows.

De�nition: Let !1 and !2 be two occurrences. We
say that !1 > !2 if, either the number of components
of !1 is greater than that of !2, or !1 and !2 have
the same number of components and i < j, where i
and j are the �rst nonequal components of !1 and !2,
respectively.

Thus, for example, 1.1.1 > 3.2, and 3.2 > 3.1.

De�nition: A substitution is a function from vari-
ables to terms. If a substitution assigns term T to
variable V , we represent this by V /T . The identity
substitution is designated by �.

De�nition: Let X and Y be two terms. We say
that a substitution � is a uni�er of X and Y �X =
�Y . We say that � is a most general uni�er, or mgu,
of X and Y if � is a uni�er and, for any other uni�er
� , � = �� for some �. Most general uni�ers are unique
up to renaming of variables.

The following de�nition is somewhat nonstandard,
but we use it because it describes the type of uni�cation
that is used in the Protocol Analyzer.

De�nition: Let X and Y be two terms, and let E
be a set of equations. We say that � is a left-handed

uni�er of X and Y with respect to E (or simply a left-
handed equational uni�er of X and Y when we can
avoid confusion), if �X can be made equal to �Y by
applying the equations from E to �X.

This di�ers from the usual de�nition of equational
uni�er, in which the equations can be applied to both
terms being uni�ed. However, we are interested in the
case in which E is a set of reduction rules, and �Y is
assumed to be irreducible.

3.2 Definitions Related to the Analyzer

A protocol is speci�ed in the Analyzer as a set
of state transition rules. These are stored as Prolog
clauses. We also assume, as is the case for Prolog, that
quanti�cation of variables in rules is existential. Thus,
whenever a rule is used, its variables are renamed, so
that substitutions made to variables in one use of the
rule have no relation to substitutions made in any sub-
sequent use of the rule.

The Analyzer is used by having the user specify a
goal G consisting of words to be learned by the in-
truder, values of local state variables, and/or a se-
quence of events that should have occurred. The An-
alyzer returns a set of solutions for G. Each solution
consists of an output state S (derived from the output
of a state transition rule), a left-handed equational uni-
�er �S of a subset T of S and a subset H of G, and an
input state S0 that immediately precedes �SG consist-
ing of the �SR where R was the input of the rule, and
any elements of �SG not in �SH. Note that, as we saw
from the example in Section 2, the output of a rule can
have more than one left-handed equational uni�er with
a goal; thus more than one solution can be generated

from a single rule. The Analyzer can be used to query
S0 or a portion of it; it will return a set of solutions
as before, each consisting of a state S00, a left-handed
equational uni�er �S00 of S

00 and S0, and an input state
S000.

Solutions are referred to as follows. Suppose that a
goal GN is identi�ed by an integer N . The solutions
for GN are identi�ed by N:1, ..., N:k. The solutions
found for N:i are identi�ed by N:i:1, ..., N:i:n, and
so on. If N:i1:::::it identi�es a solution, we refer to
the state output by the rule that produced N:i1:::::it
as SN:i1:::::it, the input state to the solution TN:i1:::::it

and the the restriction of the left-handed equational
uni�er of SN:i1:::::it and TN:i1:::::it�1 to the variables in
TN:i1:::::it�1 as �N:i1:::::it. We refer to N:1, ..., N:k as
the index of the solution SN:i1:::::ik .

To see how this works, in our example in Section 2,

our original goal was the state in which the intruder
knew the word Z. Suppose that we assigned that goal
the integer 1. The solutions we generated by trying to
�nd the word Z would be indexed as 1.1,1.2,1.3, and
1.4. When we asked how to �nd the word e(W ,Z) in
solution 1.3, the answers we got would be indexed as
1.3.1, 1.3.2, and 1.3.3.

Let TN:i1:::::it, TN:i1:::::it�1 , ..., GN be a sequence of
goals found by the Analyzer, where GN is the orig-
inal goal. Let �(N:i1:::::it;N:i1:::::ij) denote the com-
position of �N:i1:::::ij , �N:i1:::::ij+1 , through �N:i1:::::it.
Then TN:i1:::::it, �(N:i1:::::it;N:i1:::::it)TN:i1:::::it�1 , ... ,
�(N:i1:::::it;N:i1)GN represents a path through the pro-
tocol. That is, it is possible to proceed from the
state described by TN:i1:::::it to the state described
by �(N:i1:::::it;N:i1:::::it)TN:i1:::::it�1, and so forth until
ultimately the state described by �(N:i1:::::it;N:i1)GN

is reached. We call this a path from TN:i1:::::it to

�(N:i1:::::it;N:i1)GN , or a path from TN:i1:::::it to GN

when we can avoid confusion. We refer to the triple
(N:i1:::::it,TN:i1:::::it, �(N:i1:::::it;N:i1)GN) as an input

state triple. We say that (M ,T ,�G) precedes (R,S,�G)
if they are on the same path and R is a pre�x of M .

To see how this works, consider the encrypt-decrypt
protocol again. We start with goal word Z, with label
1. Consider solution 1.2, which used Protocol Rule 1,
which says that if the intruder knows X and Y , he or
she can produce e(X,Y), to deduce that if Z = e(X,Y)
the intruder can learn Z if he or she knows X and Y .
In this case �1:2 is the substitution Z/e(X,Y). Suppose
that we apply Protocol Rule 1 to Y again, to obtain
solution 1.2.2, in which the intruder can learn Y if Y
= e(X1,Y1) and the intruder knows X1 and Y1. In this
case �1:2:2 = Y /e(X1,Y1), and �1:2:1, the composition
of �1:2 and �1:2:1, is Z/e(X,e(X1 ,Y1)). The input state
triple is (1.2.2, fX1,Y1,Xg,e(X,e(X1,Y1))).

4 How Languages are Represented and

Veri�ed in the Protocol Analyzer

A language rule is represented in the Protocol Ana-
lyzer database as a clause of the form

languagerule(N ,langmember(W ,Langname),
Conditions)

where N is an integer identifying the rule, W is a word,
and Conditions is a set of conditions, which may in-
clude conditions saying that certain subterms of of W
are members of languages. Thus, an example of a lan-
guage rule would be

languagerule(5,langmember(e(A,B),seskey),

langmember(B,seskey)).

which would be the Analyzer's internal representation
of the language rule

Seskey ! e(L,Seskey).

Since for the remainder of this paper, we will be de-
scribing the way in which the Protocol Analyzer deals
with languages internally, we will use this internal rep-
resentation of these language rules from now on.

The exact way in which language membership is ver-
i�ed is described in [5], so we do not go into detail here.
Briey, the outline is this.

A word belongs to a language Lang if and only if it
is of the form �W , where

languagerule(N ,langmember(W ,Lang),C)

is a language rule, �W is irreducible, and �C is true.
The condition C consists of the conjunction of condi-
tions of the form langmember(W ,Lang), not(W = V),
and lookedfor(Y), where Y is a subterm of W 2. The
�rst condition is self-explanatory. The second, not(W
= V), is interpreted to mean that there is no uni�er
� of W and V so that � is the identity on W (that
is, V does not subsume W). The third, lookedfor(Y),
is interpreted to mean that the intruder has not yet
learned the word Y .

We use these facts to implement two Prolog proce-
dures. One, expandconditionsallsubs, given a condition
C returns a complete set S of substitutions � and con-
ditions E such that E implies �C. By complete we
mean that, if � is a substitution, then there is a (possi-
bly empty) subset T of S such that, if (�i,Ei) 2 T, then
� = �i�i and �C holds if and only if the logical dis-
junction of all �iEi in T holds. The other procedure,
expandconditionsalways, given a condition C returns a
condition E such that E implies C.

Expandconditionsallsubs is computed as follows. For
each occurrence of langmember(X,L) in a condi-
tion C where X is not a variable, it �nds a rule
languagerule(M ,langmember(Y ,L),D), and the most
general uni�er � of X and Y . It then replaces
langmember(�X,L) in �C with �D. It continues
making these substitutions and replacements until no
further nonvariable occurrences of langmember(X,L)
can be found. The resulting condition is E, and
this together with the substitution � obtained by
composing the most general uni�ers obtained and
restricting to the variables in C is called an ex-

pansion pair (�,E). When queried repeatedly,

2A user de�ning a language actually has more leeway than

this in de�ning conditions, but this describes the form of the

conditions generated by the procedure described in this paper.

expandconditionsallsubs will produce the set of all ex-
pansion pairs. If Expandconditionsallsubs �nds no such
uni�ers, it produces the single expansion pair (�,C).

As an example, we consider the language
enckey described below, and consider the condition
langmember(e(W ,Z),enckey). The three language
rules stored as Prolog clauses are of the form:

languagerule(1,

langmember(e(X,key(A)),enckey),ok).

languagerule(2,langmember(e(X,Y),enckey),

langmember(Y,enckey)).

languagerule(3,langmember(d(X,Y),enckey),

langmember(Y,enckey)).

For the �rst application of expandconditionsallsubs ,
we unify e(W ,Z) with e(X,key(A)) from Rule 1. The
resulting condition is ok, that is, e(X,key(A)) is al-
ways in the language. For the second, we unify
e(W ,Z) with e(X,Y) from Rule 2 to obtain the con-
dition langmember(W ,enckey). In the case of Rule
3, we fail to unify d(X,Y) with e(X,Y). Thus, there
are two expansion pairs produced: (Z/key(A),ok) and
(�,langmember(Z,enckey)) where � is the identity sub-
stitution.

Expandconditionsalways is computed as follows.
As in the case of expandconditionsallsubs , for each
occurrence of langmember(X,L) in a condition C

where X is not a variable, it �nds a rule
languagerule(M ,langmember(Y ,L),D), and a most
general uni�er � of X and Y . However, it only suc-
ceeds if such a � can be found that is the identity on
C, that is, if Y subsumes X. If it does succeed, it re-
places langmember(�X,L) = languagerule(X,L) in �C
= C with �D. It continues making these substitutions
and replacements until no further nonvariable occur-
rences of langmember(X,L) can be found. It computes
all conditions that can be calculated this way, and re-
turns the disjunction of these conditions.

Consider again the language enckey and the con-
dition langmember(e(W ,Z),enckey). For the �rst lan-
guage rule, e(X,key(A)) does not subsume e(W ,Z) be-
cause the substitution Z/key(A) is not the identity
on Z. On the other hand, for the second language
rule, the substitution is the identity. For the third lan-
guage rule, there is no uni�er. Thus the �nal result
of expandconditionsalways is langmember(Z,enckey).
This condition will imply langmember(e(W ,Z),enckey)
no matter what substitutions are made to W and Z.

We now use the procedures expandconditionsallsubs
and expandconditionsalways to produce a proof that
knowledge of a member of a language implies previ-
ous knowledge. Our strategy is, for each language rule
N de�ning a word W , to attempt to construct paths to

W , working backwards from W . We identify the state
in which the intruder knows W as goal N , correspond-
ing to our notation in Section 3. We use a breadth-
�rst search strategy, �rst �nding all states that can
immediately precede goal N , then the states that can
immediately precede each of those states, and so forth.

Each time we produce an input state, we attempt to
prove that it contains a member of the language for all
possible substitutions makingW a member of the lan-
guage. This is done as follows, by a procedure we call
the language membership veri�cation procedure. Let
(N:i1:::::ik, TN:i1:::::ik, �(N:i1:::::ik;N:i1)fW;Cg) be an in-
put state triple produced by a search for fW ,Cg. We
would like to show that, whenever �(N:i1:::::ik;N:i1)W

is a member of Lang, then there is a word known
by the intruder in TN:i1:::::ik that is a member of
Lang. We begin by determining all cases in which
�(N:i1:::::ik;N:i1)C can hold. We do this by invoking
expandconditionsallsubs on �N:i1:::::ikC. For each ex-
pansion pair (�; E) produced, we look at each word �V
in �TN:i1:::::ik. We execute expandconditionsalways on
langmember(�V ,Lang) to produce a condition F that
implies langmember(�V ,Lang). We then attempt to
show that E implies F . If, for each expansion pair
(�; E), there is some �V such that we can prove that
this holds, then we will have proved our result for the
input state TN:i1:::::ik. We mark the solution SN:i1:::::ik

as a success and do not attempt to prove the result
for any solution preceding SN:i1:::::ik. Otherwise, we
use the Analyzer to produce all solutions that can im-
mediately precede SN:i1:::::ik and perform the language
membership veri�cation procedure on the input state
for each solution.

We continue in this fashion until we have either
shown that all paths to W must contain a member
of the language Lang, we encounter a path from an

initial state to W that cannot be proved to contain
a member of the language, or we encounter a path of
length Q that cannot be proved to contain a member
of the language, where Q is a parameter maintained by
the system. In the �rst case, we will have succeeded in
proving that intruder knowledge ofW implies previous
intruder knowledge of W , and in the other two cases
we will have failed.

As an example, consider the language enckey
again, and consider the second language rule,
which has language member e(W ,Z) with condition
langmember(Z,enckey). Suppose that we ask the
analyzer how the intruder can �nd e(W ,Z), and
it tells us that this can be done if the intruder
knows d(R,Z). If we label e(W ,Z) with the inte-
ger 1, the corresponding input triple will be (1.1,
d(R,Z), fe(W ,Z), langmember(Z,enckey)g). Comput-

ing expandconditionsallsubs on langmember(Z,enckey),
we will obtain the single expansion
pair (�,langmember(Z, enckey)). For this expansion
pair, we attempt to compute expandconditionsallsubs
on langmember(d(R,Z),enckey). The only rule we can
apply is languagerule(3, langmember(d(X,Y),enckey),
langmember(Y ,enckey)). This results in the condition
langmember(Z,enckey). Since langmember(Z,enckey)
implies langmember(Z,enckey), we are done.

A more detailed description of this process, with fur-
ther examples and an outline of how it is implemented
in Prolog, is given in [5].

5 How the Protocol Analyzer Gener-

ates Languages

5.1 Overview of this Section

We will present the Protocol Analyzer's language
generation procedure in the following way. First, we
will describe the general procedure for generating lan-
guages. Then we will describe in detail the various
types of language rules that can be generated when
we fail to show that a state contains a word belonging
to the language we are trying to de�ne. Once this is
done, we will focus more broadly and describe the lan-
guage generation process itself, dividing it into stages
and describing each stage in detail.

5.2 How Rules are Generated

The strategy the Protocol Analyzer uses to generate
languages is to start with one language rule, supplied
by the user. It then attempts to prove the language
unreachable by proving that knowledge of a word in
the language implies previous knowledge of the word
in that language. In each case in which it fails to do
so, it either creates a rule that implies that one of the
words the intruder must know previously is in the lan-
guage, or modi�es an old rule so that the particular
word that is being veri�ed is no longer in the language.
The Analyzer now attempts to prove the new language
unreachable, and adds or modi�es rules as before. It
continues this process until it either succeeds in prov-
ing the language unreachable or is unable to create any
new rules. There is also the possibility that the Ana-
lyzer may get into an in�nite loop, in which case it will
fail after a certain number of iterations, which can be
speci�ed by the user.

The only input required by the user is to name the
language, to input the �rst language rule, called the
seedword rule, and to choose the search depth and
strategy. The procedure for generating the seedword

rule is fairly straightforward. Languages usually arise
out of the user's trying to prove a particular word un-
reachable. What the user often �nds instead is a set
of words that contain that word, or a portion of that
word, as a subword, and which de�nes the language.
We call the original word the user is trying to �nd the
seedword of the language. Thus we begin by having the
user specify the seedword S. In some cases, the seed-
word may contain a subword that is being looked for
by the intruder. We allow the user to specify this one
condition. Thus, if the user is trying to �nd out how
to �nd e(X,Y), where Y is not known by the intruder,
and speci�es the name \encrypt" for the language, the
Analyzer will construct the initial seedword rule

languagerule(1,langmember(e(X,Y),encrypt),

lookedfor(Y)).

The basic scenario for generating rules is this. Sup-
pose that we are given a rule of the form

languagerule(N ,langmember(W ,Lang),C)

and we are attempting to prove that, if C holds, then
every path leading to a state S in which the intruder
knowsW and the conditions in C hold contains a state
in which the intruder knows a member of Lang. That
is, for each path, we want to show that there is an
input triple (M ,T , �fW;Cg) such that T contains a
word of Lang. We attempt to prove that T contains a
member of Lang by running expandconditionsallsubs on
�C, and for each expansion pair (E,�) generated, at-
tempt to prove that E implies that �T contains a word
in Lang by showing that, for at least one X in �T , E
implies the result of running expandconditionsallsubs on
langmember(X,Lang). If we fail to do so, we generate
a new rule.

The way in which the new rule is generated depends
upon the structure of the words in �T . We classify
rules as of type I, II, or III, depending upon how they
are generated.

Briey, a rule of type I is generated when an input
word is generated containing a word Z known to be a
member of the language as a subword. We replace Z
or some subword containing Z with a variable Y , and
generate a rule or set of rules saying that this word is
in the language as long as Y is in the language.

A rule of type II is generated when we �nd that
�W can be obtained for some �. Let R be a subword
occurring in �W such that R is in the language. Then
R = �U , from some language rule

languagerule(N ,langmember(U ,Lang),C0).

We add to the condition C0 the condition not(U =
R) (that is, we are saying that U in general cannot be
found, except possibly for the case U = R).

A rule of type III is generated when W contains a
lookedfor word Y , and the input word contains Y but
not W . We generate a new rule or set of rules that say
that the input word is in the language as long Y is a
lookedfor word.

These rules are described in detail below.

5.3 The Different Types of Rules

5.3.1 Rules of Type I

We have already encountered rules of type I in Sec-
tion 2. Suppose that �T contains a word U either
containing W as a subword or a word X such that
langmember(X,Lang) appears in E. We can make �T
contain a member of Lang by adding the rules

languagerule(Ni, langmember(Vi,Lang),
langmember(Yi,Lang))

where the Vi and Yi are created as follows.

Let V be the smallest subterm of U containing W
(orX) such that membership of V in Lang would imply
membership of U in Lang. If there is more than one
such subterm, choose the one with the least occurrence.
Let i1:i2:::ik be the least occurrence ofW (or X) in V .
Let V1 be the result of replacing the term occurring at
i1 in V by the variable Y1. The language rule

languagerule(N1, langmember(V1,Lang),
langmember(Y1,Lang))

will guarantee that V is in Lang as long as the term
occurring at i1 is. Similarly, if Z is the term occurring
at i1:i2:::ij in V , where j < k, let Vj+1 be the result of
replacing in Z the term occurring at i1:i2:::ij:ij+1 with
the variable Yj+1. The language rule

languagerule(Nj+1, langmember(Vj+1,Lang),
langmember(Yj+1,Lang))

will guarantee that Z is in Lang as long as the term
occurring at i1:i2:::ij:ij+1. Together, all these rules will
imply that V is in Lang as long as W (or X is), and
hence that U is in Lang as long as W or X is.

We call rules generated in this way rules of type I.

For example, suppose that we started out with the
seedword rule

languagerule(1,langmember(e(X,Y),encrypt),

ok)

and the Analyzer discovered an input state triple
(M ,T ,fe(X,Y),okg) where T is the state in which the
intruder knows e(R,(Q,d(Z,e(X,Y)))), where (,) is
the concatenation function. The result of applying
expandconditionsallsubs to the condition lookedfor(Y)
is the expansion pair (�,ok), where � is the identity.
Clearly, ok does not imply that e(R,(Q,d(Z,e(X,Y))))
is a member of encrypt, so we attempt to gen-
erate a rule of Type I. The smallest subterm of
e(R,(Q,d(Z,e(X,Y)))) whose membership in encrypt
would imply membership of the whole word in encrypt
is (Q,d(Z,e(X,Y))). So in this case we would generate
two rules:

languagerule(2,langmember((Q,Y1),encrypt),

langmember(Y1,encrypt)).

languagerule(3,langmember(d(Z,Y2),encrypt),

langmember(Y2,encrypt)).

Notice that it would also be possible to generate the
single language rule

languagerule(2,

langmember((Q,d(Z,Y1)),encrypt),

langmember(Y1,encrypt)).

However, we prefer to generate the multiple rules, �rst,
because they result in a larger language, and secondly,
because they result in simpler, more uniform-appearing
languages for which it is easier to develop faster algo-
rithms for verifying membership.

5.3.2 Rules of Type II

In a number of cases, it will not be possible to produce
a rule or rules of Type I. But, it may be that ��W
contains a subterm V satisfying

languagerule(Q,langmember(X,Lang),C0)

for some language rule, that is, there is a substitution
� such that V = �X and �C0 holds. If � is not the
identity, we can modify the language rule to

languagerule(Q, langmember(X,Lang),
(C0, not(X=V))).

We also have the option, if C0 contains a condition
of the form lookedfor(Z), and Z, and U = �Z, of mod-
ifying the language rule to be

languagerule(Q, langmember(X,Lang),
(C0,not(Z=U)).

The latter can be helpful if language rules of type III
are to be generated, as we will see in the next section.

We call either type of rule a rule of Type II.
For example, suppose we are trying to generate the

language encrypt2 from the seedword rule

languagerule(1,langmember(e(X,Y),encrypt2),

lookedfor(Y))

and that the Analyzer generated the input triple
(M ,�,fe(key(A),rand(A,N),okg) where � is the empty
set. Then, depending upon which strategy we are us-
ing, we can generate one of the following rules of type
II that will guarantee that e(key(A),rand(A,N)) no
longer satis�es Rule 1:

languagerule(1,langmember(e(X,Y),encrypt2),

(lookedfor(Y),

not(e(X,Y) = e(key(A),rand(A,N)))))

or

languagerule(1,langmember(e(X,Y),encrypt2),

(lookedfor(Y),

not(Y = rand(A,N)))).

At this point in the implementation of the Protocol
Analyzer, we restrict ourselves to modifying seedword
rules and rules of Type III when we generate rules of
Type II. Rules of Type III are described in the next
section.

5.3.3 Rules of Type III

A third type of rule, which arises more rarely than
the other two, is used in only in the case in which C

contains a condition lookedfor(Y) where Y is a sub-
term of W . Suppose that we have an input triple
(M ,T ,�fW;Cg) and an expansion pair (�; E) such that
�T contains a word U containing ��Y as a subterm,
but U does not contain ��W . This can be used to
generate what we call rules of Type III.

Our procedure for generating rules of Type III is
similar to that for generating rules of Type I.

We add the rules

languagerule(Ni, langmember(Vi,Lang),
langmember(Yi,Lang))

where the Vi and Yi are created as follows.
Let V be the smallest subterm of U containing ��Y

such that membership of V in Lang would imply mem-
bership of U in Lang. If there is more than one such
subterm, choose the one with the least occurrence. Let
i1:i2:::ik be the least occurrence of V in U . Let V1 be
V after the term occurring at i1 has been replaced by

the variable Yi1 . Similarly, if Z is the term occurring
at i1:i2:::ij, where j < k, let Vj+1 be Z after the term
occurring at i1:i2:::ij:ij+1 has been replaced with the
variable Yj+1.

For j from 1 to k-1, we add the rules

languagerule(Nj, langmember(Vj,Lang),
langmember(Yj,Lang)).

For j = k, we add the rule

languagerule(Nk, langmember(Vk,Lang),
(lookedfor(Yk), C))

where Yk = Y and Vk is the smallest subterm of U not
equal to Y containing Y .

The remaining part of the condition C is constructed
as follows. Suppose that the current form of the seed-
word rule is

languagerule(1, langmember(W ,Lang),
lookedfor(X)).

Then C is empty. On the other hand, if the current
form of the seedword rule is

languagerule(1, langmember(W ,Lang),
lookedfor(X),D),

where D is the concatenation of conditions of the form
not(X = S), then C is set equal to D. If the seedword
rule is of any other form, the procedure fails.

For example, suppose that, we attempted to de�ne
a language with the seedword rule

languagerule(1,langmember(e(X,Y),encrypt2),

lookedfor(Y))

and at some point this had been replaced with the rule
of Type II

languagerule(1,langmember(e(X,Y),encrypt2),

(lookedfor(Y),not(Y = rand(A,N)))).

Suppose that the Analyzer found an input state
triple of the form (N , T , fe(X,Y), lookedfor(Y), not(Y
= rand(A,N))g). Suppose, furthermore, that T was
found to contain a word d(Z,Y) for some Z. Then we
could construct a rule of Type III of the form

languagerule(3,langmember(d(X,Y),encrypt),

(lookedfor(Y),not(Y = rand(A,N)))).

5.4 Strategies for Generating Rules

Our next problem is to choose a strategy for generat-
ing rules. In many cases we will have a choice between
generating a rule of type I, II, or III. The strategy we
have chosen is to prefer rules of type I over rules of
type II, since adding rules of type I makes the lan-
guage larger (which is preferable), and adding rules of
type II makes it smaller. However, although rules of
type III also extend the language, it turns out that
they in turn must satisfy additional constraints in or-
der to make them consistent with the initial seedword
rule, which in turn also limits the size of the language.
Thus we generate rules of type III only as a last resort.

The use of rules of Type III puts a constraint on
the generation of rules of Type II in the following way.
Suppose that we have generated a rule of type II

languagerule(N , langmember(W ,Lang),
Conditions)

where Conditions contains a condition of the form
not(W = Z). Suppose that next we generate a rule
of type III

languagerule(M ,langmember(V ,Lang),
Conditions).

IfW contains variables not in V , the rule of type III
generated may be vacuous. For example, suppose that
the rule of type II is

languagerule(1,langmember(e(X,Y),encrypt),

(lookedfor(Y), not(e(X,Y) = e(key(A),Y)))

and the rule of type III is

languagerule(3,langmember(d(Z,Y),encrypt),

(lookedfor(Y),

not(e(X,Y) = e(key(A),Y)))).

The second language rule says that a word in the
language must satisfy the condition that there is no
X such that e(X,Y) = e(key(A),Y), which is patently
false. The fact that the �rst language rule says that
this is the case for a particular value of X does not
imply the result for the second language rule.

We get around this by using a di�erent strategy
for computing rules of Type II when we expect to en-
counter rules of Type III. Given a rule

languagerule(N ,langmember(W ,Lang),
Conditions)

where Conditions contains a condition of the form
lookedfor(Y), when we �nd that ��W can be found,
where ��W is not the identity, we augmentConditions
by the condition not(Y = ��Y). Now, when a rule of
Type III

languagerule(Q,langmember(V ,Lang),
Newconditions)

is generated, it will contain Y as a subterm, so it will
be possible to use the �rst rule to show that the second
holds. We call the original strategy for generating rules
of type II Strategy 1, and the new strategy Strategy 2.

It is advisable to use Strategy 1 when possible, since
it generally leads to bigger languages. On the other
hand, there are a number of cases in which languages
cannot be generated without use of Strategy 2. There
are also a few cases in which Strategy 2 might be prefer-
able since it puts the conditions directly on the looked-
for word, which is the word the user was originally
trying to determine if the intruder could �nd. Since
we cannot determine in advance which strategy would
be preferable, we give the user the choice. If the user
states no preference, the Analyzer tries Strategy 1. If
that fails, the Analyzer uses Strategy 2.

5.5 The Procedure for Generating a Language

Languages are generated by iterating a three step-
process. These are: input word generation, veri�ca-
tion, and rule generation. We describe each of these in
detail below.

5.5.1 Input Word Generation

In the input word generation step, we take each rule

languagerule(N , langmember(W ,Lang),
Conditions)

to which the input word generation step has not previ-
ously been applied, and use the Protocol Analyzer to
�nd all conditions under which the intruder could learn
W , discarding any results that violate the conditions in
Conditions. For each solution that contains nonempty
local state variables as input, the Analyzer is used to
�nd the conditions in which a state in which those vari-
ables have these values could be reached. This process
is iterated until either the only states remaining to be
queried have no nonempty state variables as input, or
some limit on state space depth de�ned by the user has
been reached. Solutions are identi�ed using the deci-
mal notation described in Section 3, as N .N1.N2. ...
Nk, where N is the integer identifying the rule.

Our reason for having the Analyzer query only
nonempty local state variables, and not words known
by the intruder, is to keep the state space relatively
small. If we allowed the Analyzer to query words as
well, we would risk running into the very state space
explosion that we are trying to control. We have used
the technique of restricting our queries to nonempty
state variables with success on a number of di�erent
protocols, and this seems to be an optimal solution, at
least in the early stages in the analysis. In the later
stages, in which state space explosion is already well
under control, it may be preferable to use a less re-
strictive policy.

5.5.2 Veri�cation

In this step, the output generated during the Input
Word Generation step is examined to show that, for
every case in which a word W belongs to the language
Lang according to a rule

languagerule(N ,langmember(W ,Lang),C)

every path toW requires intruder knowledge of a mem-
ber of Lang. Paths for which we fail to produce such
a result are saved for the rule generation section. We
construct a set FAILN of the input states appearing
in such paths, together with the conditions for which
we failed to prove language membership, as follows.

We start with two sets, NODESN and FAILN . Ini-
tially, FAILN is empty, while NODESN is the set of
all input state triples (M , T , �fW;Cg) produced in the
input word generation step. For each element (M , T ,
�fW;Cg) of NODESN , we attempt to use the veri�-
cation procedure outlined in Section 4 to prove that,
in each case where �W is a member of Lang, then T

must contain a member of Lang. In other words, we
use the expandconditionsallsubs procedure to produce
the set of expansion pairs (E,�) of the condition C,
and for each such pair, we attempt to prove that there
is a word V in �T such that E implies that V is in
Lang. If we cannot prove the result, we delete the
triple from NODESN , but we add to FAILN all 4-
tuples (M ,�T ,��W ,E) for which our attempt to prove
membership of an element of �T failed. If we can prove
the result, we delete (M , T , �fW;Cg) from NODES,
as well as all triples (P ,S,�fW;Cg) where P precedes
M . We also delete all such (P ,S,�W ,E) from FAILN .
We continue until the set NODESN is empty.

Lemma: If, for each rule N , FAILN is empty once
the procedure described above completes, then we have
successfully proved the language unreachable.

Proof: If we can prove that, if FAILN is empty
when the procedure completes, then each path to N

contains at least one state in which the intruder must
know a member of the language, then we are done.

Suppose that we are given an input state triple
(P ,S,�fW;Cg). Then, we have either shown that, for
all expansion pairs (E,�) of C, there is a member of
�S that can be shown to be a member of Lang, or
there is a triple (M ,P ,�fW;Cg) for which this is true
and for which P precedes M . In the �rst case, we
have shown that, for all possible substitutions � mak-
ing �W a member of Lang, then �S contains a member
of Lang. In the latter, we have shown that there is a
M preceded by P for which this is true. Since the path
from P to N must pass through M , in either case we
have shown that any path containing P can be shown
always to contain a member of Lang. 2

If FAILN is empty for all N , the algorithm pro-
ceeds to the Optimization Step. If there is at least one
nonempty FAILN , we proceed to the Rule Generation
Step.

5.5.3 Rule Generation

In this step, we examine the elements of each nonempty
FAILN to see if we can generate rules that will guar-
antee unreachability of the language L.

We search FAILN in a top-down fashion, so that,
if Q precedes M , then (M ,T ,�W ,E) is examined �rst.
Let languagerule(N , langmember(W ,Lang), C) be a
language rule and (M , T , �W , E) be a 4-tuple on a
path toW from FAILN . We determine if T contains a
word V containing �W as a subterm, or if E contains a
condition langmember(X,Lang) such that V contains
�X as a subterm. If either of those is the case, we
construct the appropriate rule of Type I and enter it
into the database. We also delete from FAILN all 4-
tuples (Q, S, �W , G) such that Q precedes M . If we
cannot construct a rule of Type I, and M is not an
initial state, we keep the tuple in FAILN .

If M is an initial state, that is, there is no state S
preceding M , we attempt to add a rule of Type II as
follows. We examine �W and attempt to see if �W
contains a subword V , such that, if

languagerule(Q,langmember(X,L),
Conds)

is the seedword rule or a rule of Type III, then V = �X

for some �, and �Conds is implied by E. If it does,
we create a rule of Type II according to the procedure
described in Section 5.3.2. We delete (M ,T , �W ,E)
from FAILN .

IfM is an initial state, and we were not able to gen-
erate a rule of Type I or of Type II from it, and we
are using Rule Generation Strategy 1, then the 4-tuple

remains in FAILN , and the language generation pro-
cedure fails, since, because there are no states preced-
ing M , it will be impossible to remove (M ,T , �W ,E)
from FAILN . If, however, we are using Rule Gen-
eration Strategy 2 and E contains a condition of the
form lookedfor(Z) for some Z, we attempt to generate
a rule of Type III according to the procedure described
in Section 5.3.3. If we succeed we delete (M ,T , �,E)
from FAILN .

We continue in this fashion until every node in
FAILN has been examined or removed. We now re-
move the remaining nodes from FAILN in the fol-
lowing fashion. If, for a given M , all tuples of the
form (M ,T ,�W ,E) have been deleted, we also delete
all tuples (Q,S,�W ,F) such that Q precedes M . If at
the end, FAILN is empty for all N , we proceed to
the input word generation step, to generate input for
the rules we have created and modi�ed. If FAILN is
nonempty for any N , then we have failed to generate
rules to cover all cases, and the procedure terminates,
reporting failure.

5.5.4 Optimization

The optimization step takes place only after the veri�-
cation step completes successfully, having veri�ed lan-
guage membership for all paths. In the optimization
step, we take each rule

languagerule(N ,langmember(X,L),
Conds)

one by one, and delete it from the rule database. We
then attempt to use the remaining rules to show that,
if X satis�es Conds, then X is a member of L. If this
is the case, then the rule is removed permanently, since
it has been proved to be redundant. It this is not the

case, the rule is returned to the database. We apply
this procedure to each rule in turn.

5.6 An Example

In this section we present an example to illustrate
how the language generation procedure works.

We begin with the following augmented version of
the Encrypt-Decrypt protocol.
Protocol Rule 1

If the intruder knows X and Y , then he or she can
�nd e(X,Y), where e(X,Y) denotes the encryption of
Y with key X.
Protocol Rule 2

If the intruder knows X and Y , then he or she can
�nd d(X,Y), where d(X,Y) denotes the decryption of
Y with key X.

Protocol Rule 3

If the intruder sends the name node(A) to a ran-
dom number server, the server will respond with
e(key(host(A)),rand(server,N)), where rand(server,N)
is a random number generated by the server.
Protocol Rule 4

If the intruder knows d(X,Y), he or she can produce
e(X,Y).
Protocol Rule 5

The intruder knows all names node(A) initially.
Suppose that a user wishes to �nd out under what

circumstances the word e(W ,Z) can be learned, where
Z is a word not known by the intruder. We will il-
lustrate the use of strategy 2; strategy 1 would not
succeed in this case. The Analyzer begins by de�ning
the seedword language rule

languagerule(1,langmember(e(W,Z),encrypt),

lookedfor(Z)).

It next �nds all possible input triples to e(W ,Z) that
do not violate the conditions lookedfor(Z). From Pro-
tocol Rule 1, we have

(1.1,fX1,d(X1,e(W ,Z))g,fe(W ,Z),lookedfor(Z)g).

From Protocol Rule 2, we have

(1.2,fX1,e(X1,e(W ,Z))g,fe(W ,Z),lookedfor(Z)g).

From Protocol Rule 3, we have

(1.3,fnode(A)g,fe(node(A),rand(server,N)),
lookedfor(rand(server(N))g)).

From Protocol Rule 4, we have

(1.4,fd(X,W)g,fe(W ,Z),lookedfor(Z)g).

Protocol Rule 5 produces no input triples.
We do not query any of these input triples any fur-

ther to produce new triples, since none of them contains
local state variables.

We now attempt to determine which input triples
contain words belonging to the language encrypt
by Language Rule 1. We begin by performing
expandconditionsalways on �lookedfor(Z) for the sub-
stitution � in each triple. For 1.1, 1,2, and
1.4, � = � and there is only one expansion pair,
(�,lookedfor(Z)). For 1.3, the one expansion pair is
(�,lookedfor(rand(server,N)).

For each result of applying expandconditionsalways,
we attempt to use expandconditionsallsubs to prove
that knowledge of a word from encrypt implies pre-
vious knowledge of a word from encrypt. It is
clear that there is only one input triple containing a

word that is subsumed by e(W1,Z1) from language
rule 1. This is 1.2, for which the language mem-
ber is e(X1,e(W ,Z)). Applying expandconditionsallsubs
to langmember(e(X1,e(W ,Z)),encrypt) yields the
condition lookedfor(e(W ,Z)). Since lookedfor(Z)
does not imply lookedfor(e(W ,Z)), the four-tuple
(1.2,fX1,e(X1,e(W ,Z))g,fe(W ,Z),lookedfor(Z)g,
lookedfor(e(W ,Z))) goes into FAIL1. Thus FAIL1

consists of:

(1.1,fX1,d(X1,e(W ,Z))g,e(W ,Z),lookedfor(Z))
(1.2,fX1,e(X1,e(W ,Z))g,e(W ,Z),lookedfor(Z))
(1.3,fnode(A)g,e(node(A),rand(server,N)),

lookedfor(rand(server(N))))
(1.4,fd(X,W)g,e(W ,Z),lookedfor(Z)).

We look at the �rst member of FAIL1. It contains
the seedword as a subword, so we can use it to generate
a rule of Type I. The smallest subterm of d(X1,e(W ,Z))
whose membership in encrypt would imply member-
ship of the whole term in encrypt is the word itself, so
the rule becomes

languagerule(2,langmember(d(W,Z),encrypt),

langmember(Z,encrypt)).

The next member of FAIL1 also contains the
seedword as a subword, The smallest subterm of
e(X1,e(W ,Z)) whose membership in encrypt would im-
ply membership of the whole term in encrypt is again
the word itself, so the rule becomes

languagerule(3,langmember(e(W,Z),encrypt),

langmember(Z,encrypt)).

Looking at the next member, 1.3, we see that the
only input word is node(A). This does not contain the
seedword or any lookedfor word, so we create a rule of
Type II by modifying language rule 1 as follows:

languagerule(1,langmember(e(W,Z),encrypt),

(lookedfor(Z),not(Z = rand(server,N)))).

Looking at the last member, 1.4, we see that, al-
though no input word contains a seedword, the input
word d(X,W) contains the lookedfor word W . Thus
the Analyzer creates a rule of Type III. Since the seed-
word rule now contains an exception, the new Type III
rule must contain the same exception.

languagerule(4,langmember(d(W,Z),encrypt),

(lookedfor(Z),not(Z = rand(server,N)))).

Once the Analyzer has �nished generating these new
rules, it now repeats the procedure with the new rules.
We leave it as an exercise to the reader to determine

that in the next round no new rules will be generated
and the language is complete.

The alert reader may notice that this language is a
little smaller than necessary. The language does not
contain any words of the form d(X,rand(server,N)),
where rand(server,N) is a lookedfor word. If we de-
�ne a new language with seedword d(X,Y), where Y
is a lookedfor word, the reader can verify that this lan-
guage will contain all d(X,Y) where Y is a lookedfor
word. Moreover, if this language had been generated
and veri�ed �rst, the rule of type III for the language
encrypt would never have been generated.

5.7 Variations on the Procedure

For the sake of the exposition, we have described
a procedure in which a given step does not begin un-
til the previous step has completed. However, for the
sake of e�ciency, it is possible to run some of the steps
concurrently. This is what we are doing in the current
implementation of the procedure. When the Analyzer
fails to prove membership for any words in a path toW
during the veri�cation step, it immediately generates
a rule which is added to the database. If the rule is a
modi�cation of an old rule (that is, a rule of Type II),
the old rule and the set of paths to it constructed in the
input word generation step is deleted. This allows us to
use the newly created rules to verify language member-
ship for the remaining paths, and saves us the possible
waste of generating redundant or duplicate rules.

In our current implementation, we also attempt to
generate a rule of Type I immediately when we fail to
prove that an input state pair (T ,�) always contains
a member of the language, instead of �rst examining
each descendant of (T ,�). This saves some time, at
the potential cost of introducing unnecessary language
rules. However, the results we have obtained so far
have indicated that this is a reasonable tradeo�.

Another improvement can be realized in the way
that conditions for the input triples are calculated. For
the purposes of this paper the conditions are calculated
by applying substitutions to the original goal condition.
However, protocol rules may also have conditions on
their input words. When a protocol rule is used to
create an input triple, these conditions are inherited
by the input words. Thus, instead of creating a triple
(M ,T ,�fW;Cg) we can create (M ,T ,f �W , �C,C'g)
where C' is the set of conditions on T imposed by the
protocol rule.

6 Experiences Using the Language

Generator

We have run the language generator on several
protocols: in particular, on the Needham-Schroeder
public-key protocol [6], for which we were able to repro-
duce the spoo�ng attack found by Gavin Lowe [2, 3],
and on the Woo and Lam secure boot protocol [8]. An
account of our analysis of the Needham-Schroeder pro-
tocol may be found in [4]. We have found it to be quite
helpful, not only in speeding up the language search,
but in avoiding confusion, especially in the generation
of rules of types II and III. This was especially the case
for the Woo and Lam secure boot protocol, which has
a very complex message structure, not only using pub-
lic keys to encrypt messages containing data encrypted
by shared keys, but shared keys to encrypt messages
containing data encrypted (or signed) by public (or
private) keys. Our previous attempts to de�ne lan-
guages by hand for this protocol had been very time-
consuming and met with limited success. By using the
language generator, although we still had to give some
thought to the order in which languages were gener-
ated, we were able to �nd appropriate languages with
a minimum of work.

7 Conclusion

In this paper we set out a procedure for automat-
ing language generation in the NRL Protocol Analyzer.
Previously languages were de�ned by hand and then
proved unreachable automatically. Now, both genera-
tion and proof of unreachability are done automatically
together, saving both time and labor on the part of the
user of the Analyzer.

Another advantage of using the automated language
generator is that it produces languages with a very sim-
ple standard format. A word is a member of a language
if it is equal to a certain term one of whose arguments
is a member of the language, or it is equal to a cer-
tain term one of whose arguments is not known by the
intruder, and the term (or the argument) is not equal
to certain values. This simple format allows us to con-
centrate on building fast procedures for proving that a
word is or is not a member of a language. Since prov-
ing language membership is at present one of the most
time-consuming portions of the Analyzer, this should
be of assistance to us in improving the Analyzer's per-
formance.

An obvious question that comes to mind is: how
helpful would the techniques that we have described
in this paper be for proving unreachability results for

other formal systems making use of rewrite rules, in-
cluding extensions of the NRL Protocol Analyzer? In
our case, we found ourselves aided by the fact that the
rewrite rules we used followed a very simple format:
namely, they are all of the form

G ! X

where X is a variable appearing in G. Although the
NRL Protocol Analyzer does not require all rewrite
rules to be of this form, rules of this sort reect the
way in which most cryptographic algorithms operate.
But this fact means that, if we ask the Protocol Ana-
lyzer how to �nd a word X, we will get a number of
responses requiring the intruder's previous knowledge
of a word containingX, thus explaining the preponder-
ance of rules of Type I. It would be interesting to see
if there were other classes of rules arising out of other
types of applications that would give rise to di�erent
types of language generation strategies.

References

[1] D. Dolev and A. Yao. On the Security of Public Key

Protocols. IEEE Transactions on Information Theory,

29(2):198{208, March 1983.

[2] G. Lowe. An attack on the Needham-Schroeder public-
key authentication protocol. Information Processing

Letters, 56:131{133, 1995.
[3] G. Lowe. Breaking and �xing the Needham-Schroeder

public-key protocol using CSP and FDR. In Proceedings

of TACAS. Springer Verlag, 1996.
[4] C. Meadows. Analyzing the Needham-Schroeder public-

key protocol: A comparison of two approaches. submit-
ted for publication, March 1996.

[5] C. Meadows. The NRL Protocol Analyzer: An
overview. Journal of Logic Programming, 26(2):113{

131, February 1996.
[6] R. M. Needham and M. D. Schroeder. Using Encryp-

tion for Authentication in Large Networks of Comput-

ers. Communications of the ACM, 21(12):993{999, De-
cember 1978.

[7] P. R�ety, C. Kirchner, H. Kirchner, and P. Lescanne.
NARROWER: A new logic for uni�cation and its ap-

plication to logic. In J.-P. Jouannaud, editor, Rewrit-

ing Techniques and Applications, 1985, pages 141{157.
Springer Verlag LNCS 202, May 1985.

[8] T. Y. C. Woo and S. S. Lam. Authentication for dis-
tributed systems. IEEE Computer, 25(1):39{52, Jan-

uary 1992.

